51、如何判断加氢炉管是否结焦?造成结焦的原因是什么?有什么防止措施?如何处理?
炉管结焦可以从下面几个方面去判断:(1)在进料不变的情况下,炉管进出口压差是否增大,若有变化应及时分析原因。(2)炉出口温度下降,增加燃料量也很难把温度提上来。(3)炉管表面有无发红现象,由于管内结焦,热阻增大,热量传不开去,于是管壁局部温度升高,使管壁发红。
造成炉管结焦的原因有:(1)火嘴燃烧不良,火焰直扑炉管,造成炉管局部过热。(2)炉管内油流速过小,介质停留时间过长或进料中断造成干烧。(3)仪表失灵,不能及时准确反映各点温度,造成管壁超温。
防止措施:(1)保持炉膛温度均匀,防止炉管局部过热,应采用多火嘴、齐火苗、短火焰,炉膛明亮的燃烧方法。(2)操作中对炉子进料量、压力及炉膛温度等参数加强观察、分析和调节。(3)防物料偏流。
52、造成加氢加热炉回火的原因及现象是什么?怎样预防?
现象:炉膛内产生正压防爆门顶开,火焰喷出炉膛,回火伤人或炉膛内发生爆炸,造成设备损坏。
原因:(1)燃料大量喷入炉内或瓦斯大量带油。(2)烟道挡板开度过小,降低了炉子抽力,使烟气排不出去。
(3)炉子超负荷运行,烟气来不及排放。
(4)开工时点火回火,主要是瓦斯阀门不严,使瓦斯串入炉内或因一次点火不着,再次点火前炉膛吹扫不净,造成炉膛爆炸回火。
预防:(1)严禁燃料油和瓦斯在点燃前大量进入炉内,瓦斯严禁 带油。(2)搞清烟道挡板的实际位置,严防阀门不严的要及时更换修理:回火器也要经常检查,如有失灵应及时更换。
(3)不能超负荷运行,应使炉内始终保持负压操作。
(4)加强设备管理,瓦斯阀门不严的要及时更换修理。 回火器也要经常检查,如有失灵应及时更换。
(5)开工点火前应注意检查瓦斯和燃料的阀门是否严密,每次点火前必须将炉膛内可燃气体用蒸汽吹扫干净。
53、换热器在使用中应注意什么事项及加氢装置的高压换热器?
换热器在运行中应注意事项有:(1)换热器在新安装或检修完之后必须进行试压后才能使用。
(2)换热器在开工时要先通冷流后通热流,在停工时要先停热流后停冷流。以防止不均匀的热胀冷缩引起泄漏或损坏。
(3)固定管板式换热器不允许单向受热,浮动式换热器管、壳两侧也不允许温差过大。
(4)启动过程中,排气阀应保持打开状态,以便排出全部空气,启动结束后应关闭。(5)如果使用碳氢化合物,在装入碳氢化合物之前要用惰性气体驱除换热器中的空气,以免发生爆炸。(6)停工吹扫时,引汽前必须放净冷凝水,并缓慢通气,防止水击。换热器一侧通气时,必须把另一侧的放空阀打开,以免弊压损坏,关闭换热器时,应打开排气阀及疏水阀,防止冷却形成真空损坏设备。(7)空冷器使用时 要注意部分流量均匀,确保冷却效果。(8)经常注意监视防止泄漏。
加氢装置的高压换热器:
主要有三种结构形式:1、第一种形式为法兰式的换热器。2、第二种形式为密封盖板封焊式换热器(此结构又称为“Ω"环式密封)。3、第三种形式为螺纹锁紧环式密封结构换热器。但法兰式换热器及密封盖板封焊式换热器的主螺栓要承受内压和压紧力的两种负荷,使得在相同压力下设计出来的换热器螺栓和螺母非常粗大,法兰面非常厚,不仅体积要比螺纹锁紧环大好多而且一旦发生泄漏很难进行紧固。螺纹锁紧环式密封结构换热器最大的一个特点就是该换热器把管箱侧承受的巨大的压力传递到了螺纹锁紧环上,而压紧螺栓只要提供垫片密封所需要的压紧力,一旦发生泄漏只要调节压紧螺栓就可以压紧垫片。
54、加氢催化剂主要成分及失活的原因是什么?
(1)加氢装置所用催化剂牌号为 RN-10B ,主要活性金属组分为 WO3、NiO 。保护剂牌号为 RG-1,主要活性金属组分为 MoO3、NiO 。在催化剂床层的顶部装填保护剂的作用为防止原料油中二烯烃及单烯烃在遇到催化剂时因催化剂活性高而发生剧烈反应,产生急剧的温升,加速催化剂结焦失活。加氢开工升压过程中应注意反应器壁温升至93度以前系统压力不得超过 2.375 Mpa。
(2)催化剂的失活,可以归纳为两种情况。一种是暂时性失活,它可以通过再生的方法恢复其活性;另一种是失活,就无法恢复其活性。加氢精制催化剂在运转过程中产生的积炭,又称结焦,是催化剂暂时失活的重要原因。在加氢精制过程中,由于反应温度较高,也伴随着某些聚合,缩合等副反应,随着运转时间的延长,由于副反应而形成的积炭,逐渐沉积在催化剂上,覆盖了催化剂的活性中心,从而促使催化剂的活性不断的衰退。一般讲,催化剂上积炭达到10—15%时,就需要再生。金属元素沉积在催化剂上,是促使催化剂失活的原因。常见的金属有镍钒、砷、铁、铜、锌等,由于金属的沉积,堵塞了催化剂的微孔,使催化剂活性丧失。
55、加氢装置易发生的氢鼓泡、氢脆、氢腐蚀?
氢鼓泡是由于原子态氢扩散到金属内部,并在金属内部的微孔中形成分子氢。由于氢分子不能扩散,就会在微孔中累积而形成巨大的内压,使金属鼓泡,甚至破裂。
氢脆是由于原子氢进入金属内部后,使金属晶格产生高度变形,因而降低了金属的韧性和延性,导致金属脆化。
氢腐蚀是由于原子氢进人金属内部后与金属中的组分或元素反应,例如氢渗入碳钢并与钢中的碳反应生成甲烷,使钢的韧性下降,而钢中碳的脱除,又导致强度的下降。
56、硫化物对设备的腐蚀与温度(t)之间具体存在以下关系?
(1)t<120℃,硫化物未分解,在无水情况下对设备无腐蚀,有水时,形成低温硫化物腐蚀。(2)120℃<t<240℃,原油中硫化物未分解,对设备无腐蚀。(3)240℃<t<340℃,硫化物开始分解,生成H2S,对设备腐蚀,并且随着温度的升高腐蚀加重。(4)340℃<t<400℃,H2S开始分解为H2和S,此时对设备腐蚀的反应式为: H2S—H2+S Fe+S—FeS R—SH(硫醇)+Fe—FeS+不饱和烃。(5)t>480℃,硫化氢接近于分解,腐蚀下降。(6)t>500℃,不是硫化物的腐蚀范围,为高温氧化腐蚀
57、反冲洗过滤器SR301过滤精度为 25 μm。
加氢原料中胶质和机械杂质是造成反冲洗频繁的主要原因。58、判断加氢预硫化完成方法?
(1)360℃恒温阶段结束前H2S浓度≦10000ppm。(2)高分连续两次放不出水。(3)床层最高温度已移至反应器最底层。(4)计算的注硫量已全部注入。
59、加氢原料带水有何危害?
加氢工艺不管是加氢精制还是加氢裂化对原料油的水分含量都有严格的要求,原料油中的水分对催化剂的影响和系统压降的影响比较大,主要体现在以下几个方面:(1)原料油中的水份影响催化剂载体的强度,水份含量过大时,有可能造成催化剂表面积下降、催化剂载体崩溃或粉化,使系统压降增大及活性组分损失。(2)原料油中的水分在含量比较轻微时,对催化剂的活性金属组分基本没有影响,但含量较大时,活性金属组分发生金属聚结,使活性金属组分的催化活性降低甚至丧失。(3)原料油中的水分还影响系统压降,水份含量较大时,系统压降增大,增加装置的能耗,严重时可造成循环氢压缩机超负荷而被迫停工。(4)原料油中的水份还可引起石油环烷酸和活性硫化物的低温腐蚀,使设备及管线腐蚀减薄,而且腐蚀产物带到加氢反应器中时,会增加反应器的压降,影响装置的长周期运行。一般的加氢原料中要求水份含量不超过300ppm。
60、加氢注水点有 A-301入口、E303/A前、R-301出口 ,注水目的是防止反应产物在冷却过程中析出铵盐堵塞管道和设备 。
61、加氢装置事故状态下易发生高压串低压的部位有哪些?
(1)高分与低分之间的油相以及高低分的酸性水到酸性水罐,高分液位要保持一定高度,防止气相串入低分;停工时,高分界位不要压空,防止气相串入酸性水罐,开工时,建立高分界位后才能开界控阀手阀。(2)循环氢入口分液罐与新氢机入口分液罐的跨线,开停工使用时注意防止新氢机突然故障,造成高压串低压,正常生产时应将循环氢入口分液罐顶跨线阀全部关闭,新氢机入口分液罐入口阀全开。(3)反应进料泵、新氢压缩机、注水泵故障停机时,应及时关闭其出口阀,防止单向阀不严高压氢气倒串回低压系统,同时注意新氢机的二回一阀及手阀应及时关闭。(4)低分罐到分馏系统,防止低分液位过低造成气相串入分馏系统。(5)分馏塔、稳定塔顶缓蚀剂注入线防止有毒物质倒串。
62、“三废"处理
(1)废气
装置生产过程中产生的含硫化氢气体,主要分布于高低压分离器、汽提塔顶回流罐等部位,产生的含硫气体都送至焦化装置内的气体脱硫部分,用N-甲基二乙醇胺溶液吸收除H2S,脱硫后的干气作为制氢原料供制氢装置使用,而脱硫部分产生的酸性气送至硫磺回收装置以回收硫磺。
装置内安全阀及放空系统排放的含烃气体均排入密封的火炬系统。原料油缓冲罐及注水罐的气封气也排入密闭的火炬系统。
加热炉排放的烟气采用烟囱高空排放措施,排放气体达到有关环保规范的要求。
(2)废水、废液
酸性水:由高压分离器、低压分离器、汽提塔顶回流罐排出的含硫、含氨污水用泵抽送到酸性水处理装置集中处理。
含油污水:原料油缓冲罐含油污水、地漏水及地沟水均送至污水处理场。
雨水排放实行清污分流,减少装置外排的含油污水量,降低污水处理场的负荷。
(3)废渣
装置正常生产过程中不产生废渣,失活的催化剂及有毒的化学物质,由反应器卸出后,用桶装深埋处理或送至废催化剂回收工厂回收。